Abstract
Diabetes is nowadays a very common medical problem among the people worldwide. The disease is becoming more prevalent with the modern and hectic lifestyle followed by people. As a result, designing an adequate medical expert system to assist physicians in treating the disease on time is critical. Expert systems are required to identify the major cause(s) of the disease, so that precautionary measures can be taken ahead of time. Several medical expert systems have already been proposed, but each has its own set of shortcomings, such as the use of trial and error methods, trivial decision-making procedures, and so on. As a result, this paper proposes a Transparent Diabetes Management System Using Machine Learning (TDMSML) expert system that uses decision tree rules to identify the major factor(s) of diabetes. The TDMSML model comprises of three phases: rule generation, transparent rule selection, and major factor identification. The rule generation phase generates rules using decision tree. Transparent rule selection stage selects the transparent rules followed by pruning the redundant rules to get the minimized rule-set. The major factor identification stage extracts the major factor(s) with range(s) from the minimized rule-set. These factor(s) with certain range(s) are characterized as major cause(s) of diabetes disease. The model is validated with the Pima Indian diabetes data set collected from Kaggle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.