Abstract

Developing low-cost, high-performance, and durable photoanodes is essential in solar-driven photoelectrochemical (PEC) energy conversion. Sb2 S3 is a low-bandgap (≈1.7eV) n-type semiconductor with a maximum theoretical solar conversion efficiency of ≈28% for PEC water splitting. However, bulk Sb2 S3 exhibits opaque characteristics and suffers from severe photocorrosion, and thus the use of Sb2 S3 as a photoanode material remains underexploited. This study describes the design and fabrication of a transparent Sb2 S3 -based photoanode by conformably depositing a thin layer of conjugated polycarbazole frameworks (CPF-TCzB) onto the Sb2 S3 film. This structural design creates a type-II heterojunction between the CPF-TCzB and the Sb2 S3 with a suitable band-edge energy offset, thereby, greatly enhancing the charge separation efficiency. The CPF-TCzB/Sb2 S3 hybrid photoanode exhibits a remarkable photocurrent density of 10.1mAcm-2 at 1.23V vs reversible hydrogen electrode. Moreover, the thin CPF-TCzB overlayer effectively inhibits photocorrosion of the Sb2 S3 and enables long-term operation for at least 100h with ≈10% loss in photocurrent density. Furthermore, a standalone unbiased PEC tandem device comprising a CPF-TCzB/Sb2 S3 photoanode and a back-illuminated Si photocathode can achieve a record solar-to-hydrogen conversion efficiency of 5.21%, representing the most efficient PEC water splitting device of its kind.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call