Abstract

The Forsmark site was recently proposed by the Svensk Karnbranslehantering AB (SKB) to serve as the potential site for construction of a future geological repository for spent high-level nuclear fuel at about 470 m depth in fractured crystalline rock. The considerations included, among other things, distance from regionally significant deformation zones with highly strained rock, lithological homogeneity, low hydraulic conductivity, groundwater salinity with an acceptable range, and lack of potential mineral resources. This report describes the calculation of transmissivity of deduced deformation zones at Forsmark and the transmissivity model used in the regional groundwater flow modeling carried out in support of the integrated site description. Besides significant decrease with increasing depth (more than four orders of magnitude over a depth of about 1 km), the calculated transmissivity values also reveal considerable spatial variability along the strikes of the zones, i.e. lateral heterogeneity (more than two orders of magnitude). A hydro-mechanical coupling is discussed, based on presented models for the tectonic evolution and the principal stress tensor. Tentatively, laboratory-scale relationships developed from normal stress experiments on a single fracture in crystalline rock can be used to estimate the maximum values of transmissivity of deduced deformation zones at Forsmark.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call