Abstract
The relationship between the defect microstructure of SiC films grown by solid-source molecular-beam epitaxy on 4H and 6H–SiC substrates and their growth conditions, for substrate temperatures ranging between 950 and 1300 °C, has been investigated by a combination of transmission electron microscopy and atomic force microscopy. The results demonstrate that the formation of defective cubic films is generally found to occur at temperatures below 1000 °C. At temperatures above 1000 °C our investigations prove that simultaneous supply of C and Si in the step-flow growth mode on vicinal 4H and 6H substrate surfaces results in defect-free hexagonal SiC layers, and defect-free cubic SiC can be grown by the alternating deposition technique. The controlled overgrowth of hexagonal on top of cubic layers is demonstrated for thin layer thicknesses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.