Abstract
The effect of a transmembrane potential on the vertical location of a charged lipid in a neutral phosphatidylcholine (PC) lipid bilayer has been investigated using negatively and positively charged spin-labeled lipids. A transmembrane potential was generated across extruded large unilamellar vesicles either by using a K +/Na + ion gradient and a K + ionophore or by using a pH gradient. Since a transmembrane potential could have opposing effects on lipids in the inner and outer monolayer, some of the acidic spin labels were asymmetrically located in the inner monolayer as a result of a pH gradient. No significant effect on their order parameters was observed upon applying a transmembrane potential. The internal dipole potential of the bilayer was modified by using dialkyl-PC or by incorporating 10 mol% phloretin, or 6-ketocholestanol in the PC, but a transmembrane potential still had no detectable effect on the spin labeled lipids. Therefore, it is concluded that the electrochemical potential across membranes probably does not cause a significant change in the vertical location of charged lipids with respect to the surface of a PC bilayer. This suggests that polar interactions and/or van der Waals interactions between the spin probe and the surrounding lipids stabilize the overall structure of the membranes and these interactions are not disrupted by a selective effect of the transmembrane potential on the charged lipids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.