Abstract

ObjectivesRelebactam is a small molecule β-lactamase inhibitor under clinical investigation for use as a fixed-dose combination with imipenem/cilastatin. Here we present a translational pharmacokinetic/pharmacodynamic mathematical model to support optimal dose selection of relebactam. MethodsData derived from in vitro checkerboard and hollow fiber infection studies of imipenem-resistant strains of Pseudomonas aeruginosa were incorporated into the model. The model integrates the effect of relebactam concentration on imipenem susceptibility in a semi-mechanistic manner using the checkerboard data and characterizes the bacterial time-kill profiles from the hollow fiber infection model data. ResultsSimulations demonstrated that the ratio of the area under the concentration-time curve for free drug to the minimum inhibitory concentration (fAUC/MIC) was the pharmacokinetic driver for relebactam, with a target fAUC/MIC=7.5 associated with 2-log kill. At a clinical dose of 250mg relebactam, greater than 2-log reductions in bacterial load are projected for imipenem-resistant strains with an imipenem/relebactam MIC≤4μg/mL. ConclusionsThe study confirms that the pharmacokinetic/pharmacodynamic driver for relebactam is fAUC/MIC, that an fAUC/MIC ratio of 7.5 is associated with 2-log kill in vitro, and that a 250mg clinical dose of relebactam achieves this target value when delivered in combination with imipenem/cilastatin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call