Abstract

BackgroundThe increasing incidence of preterm birth has led to a global problem of adverse neurodevelopmental outcomes in preterm neonates as a result of brain injury. There is still a lack of models mimicking diffuse white matter injury (WMI) in preterm neonates that can be applied to transgenic mice.MethodsThe right common carotid artery of the neonatal mouse was ligated on postnatal day 3 (P3) C57BL/6 mice and followed by 80, 90, or 100 min of hypoxia using a mixture of 10%±0.2% oxygen-nitrogen. The most suitable model was chosen by characterizing the effects of this hypoxic-ischemic insult on development of myelin, glial cell conditions, and neurological outcomes by hematoxylin-eosin (HE) staining performed at postnatal day 17 (P17), western blot measuring myelin basic protein (MBP) at postnatal day 10 (P10) and P17, immunofluorescence staining of MBP-neurofilament protein heavy chain (NFH), oligodendrocyte transcription factor-2 (Olig2)-adenomatous polyposis coli clone (CC1), glial fibrillary acidic protein (GFAP) and ionic calcium linker protein (Iba-1) at P17, electron microscopy observing myelin microstructure at postnatal day 52 (P52) and behavioral testing at postnatal day 45–50 (P45–P50).ResultsThe 90-min group showed neuroanatomical changes in the ipsilateral side of the brain, the 80-min group showed minor changes, and the 100-min group showed severe injury. Mice in the 90-min group subsequently showed marked activation of astrocytes, augmentation of microglia, a notable decrease in expression of MBP with a normal level of NFH, long-term cognitive dysfunction, and impairment of the myelin ultrastructure in adulthood.ConclusionsIn conclusion, a mouse model of preterm diffuse WMI rather than cystic periventricular leukomalacia was successfully achieved by ligating one of the common carotid arteries on P3 followed by 90 min of hypoxia in a mixture of 10%±0.2% oxygen-nitrogen. The attempt provides an adequate translational animal model for elucidating the underlying mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call