Abstract

AbstractTransient electronics, which can operate only for short‐lived applications and then be eco‐friendly disintegrated, create opportunities in environmental sensing, healthcare, and hardware security. Paper‐based electronics, or papertronics, recently have rapidly advanced the physically transient device platform because paper as a foundation offers an environmentally sustainable and cost‐effective option for those increasingly pervasive and fast‐updated single‐use applications. Paper‐based power supplies are indispensable to realize a fully papertronic paradigm and are a critical enabler of environmentally benign power solutions. Microbial fuel cells (MFCs) hold great potential as power sources for such green papertronic applications. This work reports the design, operation, and optimization of a high‐power papertronic MFC by biosynthesizing microbe‐mediated tin oxide nanoparticles (SnO2 NPs) on dormant Bacillus subtilis endospores. They form an electrical conduit that improves electron harvesting during the spore germination and power generation. The MFC is packaged in a sub‐microporous alginate to minimize the potential risk of bacteria leakage. Upon the introduction of water, the paper‐based MFC generates a significantly enhanced power density of 140 µW cm−2, which is more than two orders of magnitude greater than their previously reported counterparts. Six MFCs connected in series generate more than sufficient power to run an on‐chip, light‐emitting diode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call