Abstract

Abnormal feeding behaviours have long been linked to disruptions in brain dopaminergic activity. Dopamine is metabolized, amongst others, by catechol-O-methyltransferase (COMT). Normally, COMT only plays a subordinate role in dopamine metabolism. However, changes in COMT activity, especially in the prefrontal cortex, become more important during events that evoke dopamine release. The current study investigated the effect of acute COMT inhibition on feeding in Wistar rats and C57BL/6 mice using a selective, brain penetrating COMT inhibitor (OR-1139). Furthermore, the effect of a long-term lack of COMT on feeding behaviour was studied in COMT-deficient (COMT -/-) mice. Apart from following the gross feeding behaviour of fasted rats and mice, the first 4 hr of re-feeding were recorded with a video camera to allow a more detailed analysis of feeding microstructure. In the acute study, rats and mice received a single injection of OR-1139 (3, 10 or 30 mg/kg), just before the experiment. We found that rats and mice receiving OR-1139 had fewer very short meals but more long meals than the controls. Treated mice even ate more frequently than the controls, but other feeding parameters remained unchanged. Conversely, COMT -/- mice displayed an increased latency to initiate the first meal and spent less total time eating than wild-type mice. In conclusion, although decreased/lack of COMT activity did not robustly alter feeding behaviour of female rodents, we observed some alterations in the microstructure of feeding. However, these minor changes were highly dependent on the extent and fashion in which COMT was manipulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.