Abstract

A transient electrothermal simulation of a 3-D integrated circuit (3DIC) is reported that uses dynamic modeling of the thermal network and hierarchical electrothermal simulation. This is a practical alternative to full transistor electrothermal simulations that are computationally prohibitive. Simulations are compared to measurements for a token-generating asynchronous 3DIC clocking at a maximum frequency of 1 GHz. The electrical network is based on computationally efficient electrothermal macromodels of standard and custom cells. These are linked in a physically consistent manner with a detailed thermal network extracted from an OpenAccess layout file. Coupled with model-order reduction techniques, hierarchical dynamic electrothermal simulation of large 3DICs is shown to be tractable, yielding spatial and temporal selected transistor-level thermal profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.