Abstract

In this article, we investigate the formation and disruption of a coronal sigmoid from the active region (AR) NOAA 11909 on 07 December 2013, by analyzing multi-wavelength and multi-instrument observations. Our analysis suggests that the formation of the sigmoid initiated ≈ 1 hour before its eruption through a coupling between two twisted coronal loop systems. This sigmoid can be well regarded as of ‘transient’ class due to its short lifetime as the eruptive activities started just after ≈ 20 min of its formation. A comparison between coronal and photospheric images suggests that the coronal sigmoid was formed over a simple \(\beta \)-type AR which also possessed dispersed magnetic field structure in the photosphere. The line-of-sight photospheric magnetograms also reveal small-scale flux cancellation events near the polarity inversion line, and overall flux cancellation during the extended pre-eruption phase which suggest the role of tether-cutting reconnection toward the build-up of the flux rope. The disruption of the sigmoid proceeded with a two-ribbon eruptive M1.2 flare (SOL2013-12-07T07:29). In radio frequencies, we observe type III and type II bursts in meter wavelengths during the impulsive phase of the flare. The successful eruption of the flux rope leads to a fast coronal mass ejection (with a linear speed of ≈ 1085 km s−1) in SOHO/LASCO field-of-view. During the evolution of the flare, we clearly observe typical “sigmoid-to-arcade” transformation. Prior to the onset of the impulsive phase of the flare, flux rope undergoes a slow rise (≈ 15 km s−1) which subsequently transitions into a fast eruption (≈ 110 km s−1). The two-phase evolution of the flux rope shows temporal associations with the soft X-ray precursor and impulsive phase emissions of the M-class flare, respectively, thus pointing toward a feedback relationship between magnetic reconnection and early CME dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.