Abstract

In most mammals, male development is triggered by the transient expression of the Y-chromosome gene, Sry, which initiates a cascade of gene interactions ultimately leading to the formation of a testis from the indifferent fetal gonad. Several genes, in particular Sox9, have a crucial role in this pathway. Despite this, the direct downstream targets of Sry and the nature of the pathway itself remain to be clearly established. We report here a new dominant insertional mutation, Odsex (Ods), in which XX mice carrying a 150-kb deletion (approximately 1 Mb upstream of Sox9) develop as sterile XX males lacking Sry. During embryogenesis, wild-type XX fetal gonads downregulate Sox9 expression, whereas XY and XX Ods/+ fetal gonads upregulate and maintain its expression. We propose that Ods has removed a long-range, gonad-specific regulatory element that mediates the repression of Sox9 expression in XX fetal gonads. This repression would normally be antagonized by Sry protein in XY embryos. Our data are consistent with Sox9 being a direct downstream target of Sry and provide genetic evidence to support a general repressor model of sex determination in mammals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.