Abstract

BackgroundEnvironmental signals to maternal organisms can result in developmental alterations in progeny. One such example is environmental sex determination in Branchiopod crustaceans. We previously demonstrated that the hormone methyl farnesoate could orchestrate environmental sex determination in the early embryo to the male phenotype. Presently, we identify a transcription factor that is activated by methyl farnesoate and explore the extent and significance of this transgenerational signaling pathway.Methodology/Principal FindingsSeveral candidate transcription factors were cloned from the water flea Daphnia pulex and evaluated for activation by methyl farnesoate. One of the factors evaluated, the complex of two bHLH-PAS proteins, dappuMet and SRC, activated a reporter gene in response to methyl farnesoate. Several juvenoid compounds were definitively evaluated for their ability to activate this receptor complex (methyl farnesoate receptor, MfR) in vitro and stimulate male sex determination in vivo. Potency to activate the MfR correlated to potency to stimulate male sex determination of offspring (pyriproxyfen>methyl farnesoate>methoprene, kinoprene). Daphnids were exposed to concentrations of pyriproxyfen and physiologic responses determined over multiple generations. Survivial, growth, and sex of maternal organisms were not affected by pyriproxyfen exposure. Sex ratio among offspring (generation 2) were increasingly skewed in favor of males with increasing pyriproxyfen concentration; while, the number of offspring per brood was progressively reduced. Female generation 2 daphnids were reared to reproductive maturity in the absence of pyriproxyfen. Sex ratios of offspring (generation 3) were not affected in this pyriproxyfen lineage, however, the number of offspring per brood, again, was significantly reduced.ConclusionsResults reveal likely components to a hormone/receptor signaling pathway in a crustacean that orchestrates transgenerational modifications to important population metrics (sex ratios, fecundity of females). A model is provided that describes how these signaling processes can facilitate population sustainability under normal conditions or threaten sustainability when perturbed by environmental chemicals.

Highlights

  • Hormones in the fetal environment regulate a variety of processes that orchestrate physiologic function in the resulting offspring

  • Transgenerational Impacts on Life History Parameters Having demonstrated that pyriproxyfen was most potent in activating the methyl farneosate receptor (MfR) we evaluated whether elevated levels of the MfR ligand in the maternal organisms elicited responses in offspring or generation offspring

  • Methyl farnesoate did appear to bind to daphnid RXR resulting in synergistic activation of the daphnid ecdysteroid receptor complex (EcR:RXR) by 20hydroxyecdysone [29]

Read more

Summary

Introduction

Hormones in the fetal environment regulate a variety of processes that orchestrate physiologic function in the resulting offspring. Changes in fetal programming due to alterations in the hormonal environment of the developing fetus, be it from maternal influences, in utero sibling influences, or maternal exposure to environmental chemicals and drugs, are generally considered to be caused by disruptions or alterations in hormonal regulation of epigenetic programming events. Environmental signals to maternal organisms can result in developmental alterations in progeny. One such example is environmental sex determination in Branchiopod crustaceans. We previously demonstrated that the hormone methyl farnesoate could orchestrate environmental sex determination in the early embryo to the male phenotype. We identify a transcription factor that is activated by methyl farnesoate and explore the extent and significance of this transgenerational signaling pathway

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call