Abstract

Authorship attribution (AA) is a field of natural language processing that aims to attribute text to its author. Although the literature includes several studies on Arabic AA in general, applying AA to classical Arabic texts has not gained similar attention. This study focuses on investigating recent Arabic pretrained transformer-based models in a rarely studied domain with limited research contributions: the domain of Islamic law. We adopt an experimental approach to investigate AA. Because no dataset has been designed specifically for this task, we design and build our own dataset using Islamic law digital resources. We conduct several experiments on fine-tuning four Arabic pretrained transformer-based models: AraBERT, AraELECTRA, ARBERT, and MARBERT. Results of the experiments indicate that for the task of attributing a given text to its author, ARBERT and AraELECTRA outperform the other models with an accuracy of 96%. We conclude that pretrained transformer models, specifically ARBERT and AraELECTRA, fine-tuned using the Islamic legal dataset, show significant results in applying AA to Islamic legal texts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.