Abstract

This paper presents a novel transformation-proximal bundle algorithm for multistage adaptive robust optimization problems. By partitioning recourse decisions into state and control decisions, the proposed algorithm applies affine control policy only to state decisions and allows control decisions to be fully adaptive, thus transforming the original problem into an equivalent two-stage Adaptive Robust Optimization (ARO) problem. Importantly, this multi-to-two transformation is general enough to be employed with any two-stage ARO solution algorithms, thus opening a new avenue for a variety of multistage ARO algorithms. The proximal bundle method is developed for the resulting two-stage problem along with convergence analysis. In an inventory control application, the affine disturbance-feedback control policy suffers from a severe suboptimality with an average gap of 34.88%, while the proposed algorithm generates an average gap of merely 1.68%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.