Abstract

Since Candida rugosa utilizes a nonuniversal serine codon CUG rather than leucine, no vectors have been constructed to transform this organism. Moreover, it is difficult to design a new transformation system because no selection markers and promoters are available. In this study, Zeocin (400 μg/ml) was demonstrated to inhibit the growth of C. rugosa. The dominant selectable marker bleomycin-resistant determinant ( ble) gene containing five CUG codons in an open-reading frame of 375 bp was synthesized by replacing its CUG codons into leucine codons ( zeo-n). This marker conferred resistance to Zeocin. GAL1 promoter, transcription elongation factor 1 ( TEF1) promoter from Saccharomyces cerevisiae and LIP3 promoter from C. rugosa were then used to drive zeo-n and to examine the function of promoter in C. rugosa. The resulting vectors enabled selection of Zeocin-resistant clones after transformation by LiCl method and electroporation. These results demonstrate that transformation into C. rugosa is feasible under the operation of GAL1, TEF1, and LIP3 promoters. The development of the transformation system for C. rugosa is essential to the genetic analysis of gene regulation and biochemical features of this fungal species and the expression of recombinant proteins in C. rugosa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.