Abstract
In this article, we consider a model shape optimization problem. The state variable solves an elliptic equation on a star-shaped domain, where the radius is given via a control function. First, we reformulate the problem on a fixed reference domain, where we focus on the regularity needed to ensure the existence of an optimal solution. Second, we introduce the Lagrangian and use it to show that the optimal solution possesses a higher regularity, which allows for the explicit computation of the derivative of the reduced cost functional as a boundary integral. We finish the article with some second-order optimality conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.