Abstract

AbstractThe intricate water-land intermingled nature of wild environments necessitates robots to exhibit multimodal cross-domain mobility capabilities. This paper introduces a novel wheel-spoke-paddle hybrid amphibious robot (WSP-bot) that can operate on flat and rough terrains, water surfaces, and water-land transitional zones. The proposed robot relies on a propulsion mechanism called transformable wheel-spoke-paddle (WSP), which combines the stability of wheeled robots with the obstacle-climbing capability of legged robots, while also providing additional aquatic mobility. The utilization of a crank-slider-based transformation mechanism enables seamless switching between multiple motion modes. An analysis of mode transition and ground motion in spoke mode was conducted, along with an investigation of its obstacle-crossing capability. Simulations were performed for mode transition, ground locomotion, and obstacle-crossing, as well as propulsion of a single WSP module on water. Based on the above work, a prototype robot was manufactured. Prototype tests, including mode transition and mobility tests on land and water surfaces under multimodal states, confirmed the effectiveness of the proposed WSP-bot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call