Abstract

Many successful methods for biomedical image segmentation are based on supervised learning, where a segmentation algorithm is trained based on manually labeled training data. For supervised-learning algorithms to perform well, this training data has to be representative for the target data. In practice however, due to differences between scanners such representative training data is often not available. We therefore present a segmentation algorithm in which labeled training data does not necessarily need to be representative for the target data, which allows for the use of training data from different studies than the target data. The algorithm assigns an importance weight to all training images, in such a way that the Kullback-Leibler divergence between the resulting distribution of the training data and the distribution of the target data is minimized. In a set of experiments on MRI brain-tissue segmentation with training and target data from four substantially different studies our method improved mean classification errors with up to 25% compared to common supervised-learning approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.