Abstract

ABSTRACTTigecycline is a last-resort antimicrobial against carbapenemase-producing Enterobacterales (CPE). However, mobile tigecycline resistance genes, tet(X) and tmexCD-toprJ, have emerged in China and have spread possibly worldwide. Tet(X) family proteins function as tigecycline-inactivating enzymes, and TMexCD-TOprJ complexes function as efflux pumps for tigecycline. Here, to the best of our knowledge we report a CPE isolate harboring both emerging tigecycline resistance factors for the first time. A carbapenem- and tigecycline-resistant Klebsiella aerogenes strain, NUITM-VK5, was isolated from an urban drainage in Vietnam in 2021, and a plasmid, pNUITM-VK5_mdr, cocarrying tet(X) and tmexCD3-toprJ3 along with the carbapenemase gene blaNDM-4 was identified in NUITM-VK5. pNUITM-VK5_mdr was transferred to Escherichia coli by conjugation and simultaneously conferred high-level resistance against multiple antimicrobials, including carbapenems and tigecycline. An efflux pump inhibitor reduced TMexCD3-TOprJ3-mediated tigecycline resistance, suggesting that both tigecycline resistance factors independently and additively contribute to the high-level resistance. The plasmid had the IncX3 and IncC replicons and was estimated to be a hybrid of plasmids with different backbones. Unlike IncX3 plasmids, IncC plasmids are stably maintained in an extremely broad range of bacterial hosts in humans, animals, and the environment. Thus, the future global spread of multidrug resistance plasmids such as pNUITM-VK5_mdr poses a public health crisis.IMPORTANCE Tigecycline is important as a last-resort antimicrobial and effective against antimicrobial-resistant bacteria, such as carbapenem-producing Enterobacterales (CPE), whose infections are difficult to treat with antimicrobials. Since 2019, mobile tigecycline resistance genes, tet(X) and tmexCD-toprJ, and their variants have been reported mainly from China, and it has become important to understand their epidemiological situation and detailed genetic mechanisms. In this study, we identified a bacterial isolate coharboring tet(X) and tmexCD-toprJ on the same plasmid. A Klebsiella aerogenes isolate in Vietnam carried both these tigecycline resistance genes on a transferable plasmid leading to high-level resistance to multiple clinically important antimicrobials, including carbapenem and tigecycline, and could actually transfer the plasmid to other bacteria. The spread of such a multidrug resistance plasmid among bacterial pathogens should be of great concern because there are few antimicrobials to combat bacteria that have acquired the plasmid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call