Abstract

Semiempirical methods could offer a feasible compromise between ab initio and empirical approaches for the calculation of large molecules with biological relevance. A key problem for attempts in this direction is the rather bad performance of current semiempirical methods for noncovalent interactions, especially hydrogen-bonding. On the basis of the recently introduced PM6-DH method, which includes empirical corrections for dispersion (D) and hydrogen-bond (H) interactions, we have developed an improved and transferable H-bonding correction for semiempirical quantum chemical methods. The performance of the improved correction is evaluated for PM6, AM1, OM3, and SCC-DFTB (enhanced by standard empirical dispersion corrections) with several test sets for noncovalent interactions and is shown to reach the quality of current DFT-D approaches for these types of problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.