Abstract

With the increasing popularity of deep learning, enterprises are replacing traditional inefficient and non-robust defect detection methods with intelligent recognition technology. This paper utilizes TL (transfer learning) to enhance the model’s recognition performance by integrating the Adam optimizer and a learning rate decay strategy. By comparing the TL-ResNet50 model with other classic CNN models (ResNet50, VGG19, and AlexNet), the superiority of the model used in this paper was fully demonstrated. To address the current lack of understanding regarding the internal mechanisms of CNN models, we employed an interpretable algorithm to analyze pre-trained models and visualize the learned semantic features of defects across various models. This further confirms the efficacy and reliability of CNN models in accurately recognizing different types of defects. Results showed that the TL-ResNet50 model achieved an overall accuracy of 99.4% on the testing set and demonstrated good identification ability for defect features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.