Abstract

Rapid Serial Visual Presentation (RSVP)-based Brain-Computer Interface (BCI) is an efficient information detection technology by detecting event-related brain responses evoked by target visual stimuli. However, a time-consuming calibration procedure is needed before a new user can use this system. Thus, it is important to reduce calibration efforts for BCI applications. In this paper, we collect an RSVP-based electroencephalogram (EEG) dataset, which includes 11 subjects. The experimental task is image retrieval. Also, we propose a multi-source transfer learning framework by utilizing data from other subjects to reduce the data requirement on the new subject for training the model. A source-selection strategy is firstly adopted to avoid negative transfer. And then, we propose a transfer learning network based on domain adversarial training. The convolutional neural network (CNN)-based network is designed to extract common features of EEG data from different subjects, while the discriminator tries to distinguish features from different subjects. In addition, a classifier is added for learning semantic information. Also, conditional information and gradient penalty are added to enable stable training of the adversarial network and improve performance. The experimental results demonstrate that our proposed method outperforms a series of state-of-the-art and baseline approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call