Abstract

Lower-grade gliomas (LGG) can eventually progress to glioblastoma (GBM) and death. In the context of the transfer learning approach, we aimed to train and test an MRI-based radiomics model for predicting survival in GBM patients and validate it in LGG patients. From each patient's 704 MRI-based radiomics features, we chose seventeen optimal radiomics signatures in the GBM training set (n = 71) and used these features in both the GBM testing set (n = 31) and LGG validation set (n = 107) for further analysis. Each patient's risk score, calculated based on those optimal radiomics signatures, was chosen to represent the radiomics model. We compared the radiomics model with clinical, gene status models, and combined model integrating radiomics, clinical, and gene status in predicting survival. The average iAUCs of combined models in training, testing, and validation sets were respectively 0.804, 0.878, and 0.802, and those of radiomics models were 0.798, 0.867, and 0.717. The average iAUCs of gene status and clinical models ranged from 0.522 to 0.735 in all three sets. The radiomics model trained in GBM patients can effectively predict the overall survival of GBM and LGG patients, and the combined model improved this ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.