Abstract

PurposeThis paper aims to present a novel transfer alignment method based on combined double-time observations with velocity and attitude for ships’ poor maneuverability to address the system errors introduced by flexural deformation and installing which are difficult to calibrate.Design/methodology/approachBased on velocity and attitude matching, redesigning and deducing Kalman filter model by combining double-time observation. By introducing the sampling of the previous update cycle of the strapdown inertial navigation system (SINS), current observation subtracts previous observation are used as measurements for transfer alignment filter, system error in measurement introduced by deformation and installing can be effectively removed.FindingsThe results of simulations and turntable tests show that when there is a system error, the proposed method can improve alignment accuracy, shorten the alignment process and not require any active maneuvers or additional sensor equipment.Originality/valueCalibrating those deformations and installing errors during transfer alignment need special maneuvers along different axes, which is difficult to fulfill for ships’ poor maneuverability. Without additional sensor equipment and active maneuvers, the system errors in attitude measurement can be eliminated by the proposed algorithms, meanwhile improving the accuracy of the shipboard SINS transfer alignment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.