Abstract

ABSTRACTTo date, the exact impact of mast cells in tumor microenvironment is still controversial because of inconsistency in observations regarding the relationship between mast cell infiltrates and cancer development and prognosis. The discrepancies in previous studies have motivated us to examine the roles of mast cells in cancer pathology from different perspectives. Here, we investigated the impact of mast cells on transcriptomic profiles in the tissue microenvironment. Mice carrying the W-sh mutation in c-kit (KitW-sh) are deficient in mast cell production and were used to assess the influence of mast cells on gene expression. By examining the transcriptomic profile among wild-type mice, KitW-sh mice, and KitW-sh mice with mast cell engraftment, we identified a list of “mast cell–dependent genes,” which are enriched for cancer-related pathways. Utilizing whole-genome gene expression data from both mouse models and human cancer patients, we demonstrated that the expression profile of the mast cell–dependent genes differs between tumor and normal tissues from lung, breast, and colon, respectively. Mast cell infiltration is potentially increased in tumors compared with normal tissues, suggesting that mast cells might participate in tumor development. Accordingly, a prognostic molecular signature was developed based on the mast cell–dependent genes, which predicted recurrence-free survival for human patients with lung, breast, and colon cancers, respectively. Our study provides a novel transcriptomic insight into the impact of mast cells in the tumor microenvironment, though further experimental investigation is needed to validate the exact role of individual mast cell–dependent genes in different cancers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.