Abstract

BackgroundThe capacity of European pear fruit (Pyrus communis L.) to ripen after harvest develops during the final stages of growth on the tree. The objective of this study was to characterize changes in ‘Bartlett’ pear fruit physico-chemical properties and transcription profiles during fruit maturation leading to attainment of ripening capacity.ResultsThe softening response of pear fruit held for 14 days at 20 °C after harvest depended on their maturity. We identified four maturity stages: S1-failed to soften and S2- displayed partial softening (with or without ET-ethylene treatment); S3 - able to soften following ET; and S4 - able to soften without ET. Illumina sequencing and Trinity assembly generated 68,010 unigenes (mean length of 911 bp), of which 32.8 % were annotated to the RefSeq plant database. Higher numbers of differentially expressed transcripts were recorded in the S3-S4 and S1-S2 transitions (2805 and 2505 unigenes, respectively) than in the S2-S3 transition (2037 unigenes). High expression of genes putatively encoding pectin degradation enzymes in the S1-S2 transition suggests pectic oligomers may be involved as early signals triggering the transition to responsiveness to ethylene in pear fruit. Moreover, the co-expression of these genes with Exps (Expansins) suggests their collaboration in modifying cell wall polysaccharide networks that are required for fruit growth. K-means cluster analysis revealed that auxin signaling associated transcripts were enriched in cluster K6 that showed the highest gene expression at S3. AP2/EREBP (APETALA 2/ethylene response element binding protein) and bHLH (basic helix-loop-helix) transcripts were enriched in all three transition S1-S2, S2-S3, and S3-S4. Several members of Aux/IAA (Auxin/indole-3-acetic acid), ARF (Auxin response factors), and WRKY appeared to play an important role in orchestrating the S2-S3 transition.ConclusionsWe identified maturity stages associated with the development of ripening capacity in ‘Bartlett’ pear, and described the transcription profile of fruit at these stages. Our findings suggest that auxin is essential in regulating the transition of pear fruit from being ethylene-unresponsive (S2) to ethylene-responsive (S3), resulting in fruit softening. The transcriptome will be helpful for future studies about specific developmental pathways regulating the transition to ripening.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1939-9) contains supplementary material, which is available to authorized users.

Highlights

  • The capacity of European pear fruit (Pyrus communis L.) to ripen after harvest develops during the final stages of growth on the tree

  • Pear fruit were harvested at weekly intervals commencing 3 weeks before commercial harvest to capture four progressive stages of maturity: S1: 100 days after full bloom (DAFB), S2: 106 DAFB, S3: 113 DAFB, and S4: 120 DAFB (S4 corresponded to the first commercial harvest date of the season) (Fig. 1)

  • There were no significant differences in fruit soluble solids content (SSC) and skin color among four harvest maturity stages examined in this study (Table 1)

Read more

Summary

Introduction

The capacity of European pear fruit (Pyrus communis L.) to ripen after harvest develops during the final stages of growth on the tree. European pears (Pyrus communis L.), including ‘Bartlett’, ‘d’Anjou’, and ‘Comice’, are economically significant fruit in the United States, with a production value of $437 million in 2012 [1]. Most European pears are harvested at the mature-green stage and usually exposed to ethylene or cold temperatures (e.g., −1 to 10 °C) prior to ripening to enhance their ability to produce ethylene and ripen at 20 °C [4]. As a climacteric fruit, pear fruit ripening includes the transition from auto-inhibitory ethylene ( known as “System 1”) to autocatalytic ethylene (“System 2”) that regulates the numerous metabolic processes associated with fruit ripening [6]. The intrinsic developmental factors that regulate the transition from System 1 to System 2 remain mostly unknown [6]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call