Abstract

Virus replication in higher vertebrates is restrained by IFNs that cause cells to transcribe genes encoding antiviral proteins, such as 2'-5' oligoadenylate synthetases. 2'-5' oligoadenylate synthetase is stimulated by dsRNA to produce 5'-phosphorylated, 2'-5'-linked oligoadenylates (2-5A), whose function is to activate RNase L. Although RNase L is required for a complete IFN antiviral response and mutations in the RNase L gene (RNASEL or HPC1) increase prostate cancer rates, it is unknown how 2-5A affects these biological endpoints through its receptor, RNase L. Presently, we show that 2-5A activation of RNase L produces a remarkable stimulation of transcription (>/=20-fold) for genes that suppress virus replication and prostate cancer. Unexpectedly, exposure of DU145 prostate cancer cells to physiologic levels of 2-5A (0.1 muM) induced approximately twice as many RNA species as it down-regulated. Among the 2-5A-induced genes are several IFN-stimulated genes, including IFN-inducible transcript 1/P56, IFN-inducible transcript 2/P54, IL-8, and IFN-stimulated gene 15. 2-5A also potently elevated RNA for macrophage inhibitory cytokine-1/nonsteroidal antiinflammatory drug-activated gene-1, a TGF-beta superfamily member implicated as an apoptotic suppressor of prostate cancer. Transcriptional signaling to the macrophage inhibitory cytokine-1/nonsteroidal antiinflammatory drug-activated gene-1 promoter by 2-5A was deficient in HeLa cells expressing a nuclease-dead mutant of RNase L and was dependent on the mitogen-activated protein kinases c-Jun N-terminal kinase and extracellular signal-regulated kinase, both of which were activated in response to 2-5A treatments. Because 2-5A and RNase L participate in defenses against viral infections and prostate cancer, our findings have implications for basic cellular mechanisms that control major pathogenic processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.