Abstract

Dietary anthocyanins are important health-promoting antioxidants that make a major contribution to the quality of fruits. It is intriguing that most tomato cultivars do not produce anthocyanins in fruit. However, the purple tomato variety Indigo Rose, which has the dominant Aft locus combined with the recessive atv locus from wild tomato species, exhibits light-dependent anthocyanin accumulation in the fruit skin. Here, we report that Aft encodes a functional anthocyanin activator named SlAN2-like, while atv encodes a nonfunctional version of the anthocyanin repressor SlMYBATV. The expression of SlAN2-like is responsive to light, and the functional SlAN2-like can activate the expression of both anthocyanin biosynthetic genes and their regulatory genes, suggesting that SlAN2-like acts as a master regulator in the activation of anthocyanin biosynthesis. We further showed that cultivated tomatoes contain nonfunctional alleles of SlAN2-like and therefore fail to produce anthocyanins. Consistently, expression of a functional SlAN2-like gene driven by the fruit-specific promoter in a tomato cultivar led to the activation of the entire anthocyanin biosynthesis pathway and high-level accumulation of anthocyanins in both the peel and flesh. Taken together, our study exemplifies that efficient engineering of complex metabolic pathways could be achieved through tissue-specific expression of master transcriptional regulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.