Abstract

Under the traditional method of frequent trajectory mining, the location of data is obtained through the GPS device. However, limited equipment accuracy may incur location ambiguity. In this paper, we propose a new trajectory data clustering method based on dynamic grid density, in order to remove this ambiguity. In this method, the trajectory space of an object is firstly divided into equal-sized squares dynamically. Then the trajectories of object are mapped to their corresponding square. Next, the density of each grid is calculated and all the frequent squares are acquired given the minimum support threshold. Lastly, the frequent area is obtained by merging the frequent squares acquired previously, using the boundary function provided. The experimental results show that this method provides an optional way of finding the frequent movement sequence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.