Abstract

Concerning roadside traffic detection applications, and to address the millimeter-wave radar's missing data problem caused by target occlusion or the absence of features in low-speed conditions, this paper proposes a trajectory compensation method regarding car-following behavior. Referring to the installation scheme of the detector, a coordinate transformation method is presented to unify the radar spatial coordinates with the road coordinates. Considering the driver's car-following behavior, the optimal velocity model (OV), full velocity difference model (FVD), and the full velocity difference and acceleration (FVDA) model are applied for tracking the vehicle's trajectory related to the movement of the vehicle ahead. Finally, a data compensation scheme is presented. Taking actual trajectory data as samples, the proposed methods are verifiably useful for compensating for missing data and reconstructing target trajectories. Statistical results of different missing data trajectories demonstrate the rationality of the application of car-following models for the missing data compensation, and the FVDA model performs well compared with the OV and FVD models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call