Abstract

This study investigates human performance in a cyclic Fitts task at three different scales of observation, either in the presence (difficult condition) or in the absence (easy condition) of a speed–accuracy trade-off. At the fastest scale, the harmonicity of the back and forth movements, which reflects the dissipation of mechanical energy, was measured within the timeframe of single trials. At an intermediate scale, speed and accuracy measures were determined over a trial. The slowest scale pertains to the temporal structure of movement variability, which evolves over multiple trials. In the difficult condition, reliable correlations across each of the measures corroborated a coupling of nested scales of performance. Participants who predominantly emphasized the speed-side of the trade-off (despite the instruction to be both fast and accurate) produced more harmonic movements and clearer 1/f scaling in the produced movement time series, but were less accurate and produced more random variability in the produced movement amplitudes (vice versa for more accurate participants). This implied that speed–accuracy trade-off was accompanied by a trade-off between temporal and spatial streams of 1/f scaling, as confirmed by entropy measures. In the easy condition, however, no trade-offs nor couplings among scales of performance were observed. Together, these results suggest that 1/f scaling is more than just a byproduct of cognition. These findings rather support the claim that interaction-dominant dynamics constitute a coordinative basis for goal-directed behavior.

Highlights

  • Trade-off phenomena emerge when human performance reaches its limits, and the trade-off between speed and accuracy especially, has played an historic role in the study of cognitive performances

  • This study aims to describe a speed–accuracy trade-off in terms of interacting constraints, which are nested across different timescales of performance

  • DESCRIPTIVE STATISTICS The means and standard deviations pertaining to each of the measured variables are presented in Table 1 for both task conditions

Read more

Summary

Introduction

Trade-off phenomena emerge when human performance reaches its limits, and the trade-off between speed and accuracy especially, has played an historic role in the study of cognitive performances. The involved timescales of control extend to around 70 muscles that must coordinate to pronounce a single syllable (Turvey, 2007), as well as to the postural sway and eye movements of speakers that become coupled in their conversation (Shockley et al, 2003; Richardson et al, 2007). All these correlated events (e.g., producing an utterance, word, or sentence, leaning forward, or backward, etc.) exist across nested timescales of change, from milliseconds to minutes or possibly hours, they are coupled, in a highly constrained coordinated activity of speech to enact a conversation

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.