Abstract

BackgroundScabies is a parasitic skin infestation caused by the burrowing mite Sarcoptes scabiei. It is common worldwide and spreads rapidly under crowded conditions, such as those found in socially disadvantaged communities of Indigenous populations and in developing countries. Pruritic scabies lesions facilitate opportunistic bacterial infections, particularly Group A streptococci. Streptococcal infections cause significant sequelae and the increased community streptococcal burden has led to extreme levels of acute rheumatic fever and rheumatic heart disease in Australia's Indigenous communities. In addition, emerging resistance to currently available therapeutics emphasizes the need to identify potential targets for novel chemotherapeutic and/or immunological intervention. Scabies research has been severely limited by the availability of parasites, and scabies remains a truly neglected infectious disease. We report development of a tractable model for scabies in the pig, Sus domestica.Methodology/Principal FindingsOver five years and involving ten independent cohorts, we have developed a protocol for continuous passage of Sarcoptes scabiei var. suis. To increase intensity and duration of infestation without generating animal welfare issues we have optimised an immunosuppression regimen utilising daily oral treatment with 0.2mg/kg dexamethasone. Only mild, controlled side effects are observed, and mange infection can be maintained indefinitely providing large mite numbers (>6000 mites/g skin) for molecular-based research on scabies. In pilot experiments we explore whether any adaptation of the mite population is reflected in genetic changes. Phylogenetic analysis was performed comparing sets of genetic data obtained from pig mites collected from naturally infected pigs with data from pig mites collected from the most recent cohort.Conclusions/SignificanceA reliable pig/scabies animal model will facilitate in vivo studies on host immune responses to scabies including the relations to the associated bacterial pathogenesis and more detailed studies of molecular evolution and host adaption. It is a most needed tool for the further investigation of this important and widespread parasitic disease.

Highlights

  • Scabies, or sarcoptic mange, is an infectious skin disease caused by the mite Sarcoptes scabiei

  • A neglected parasitic disease caused by the microscopic mite Sarcoptes scabiei, is a major driving force behind bacterial skin infections in tropical settings

  • Aboriginal and Torres Strait Islander peoples are nearly twenty times more likely to die from acute rheumatic fever and rheumatic heart disease than individuals from the wider Australian community

Read more

Summary

Introduction

Sarcoptic mange, is an infectious skin disease caused by the mite Sarcoptes scabiei. Over 70% of two year old children in Australia’s remote Aboriginal communities have been at least once infected with scabies, most of them acquiring the first infection as infants. These numbers are reflected in the rates of observed streptococcal skin infections in over 80% of these children [6]. Scabies is a parasitic skin infestation caused by the burrowing mite Sarcoptes scabiei. It is common worldwide and spreads rapidly under crowded conditions, such as those found in socially disadvantaged communities of Indigenous populations and in developing countries. We report development of a tractable model for scabies in the pig, Sus domestica

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.