Abstract

This paper proposes a new tracking control design for linear time-varying systems. The proposed control input, which is in the span of finitely many preselected input data, minimizes the L2-norm of the output tracking error. The more input data is used, the less L2-norm of the tracking error is achieved. The design of the new controller, which consists of a feedforward controller and a discretized state feedback loop, requires a finite-time preview of the system parameters and the reference trajectory. It is shown that as long as the preview time is longer than a critical value, the closed-loop stability is maintained irrespective of the stability property of the system’s zero dynamics. When the system parameters are periodically time-varying, the proposed design can be solely based on a set of experimental input and output data instead of on the exact information of system parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.