Abstract

This paper presents an unmanned ground vehicle for use in outdoor environments. The vehicle features a two-bodied design in which the two bodies can rotate relative to each other about a fixed axis. The vehicle uses tracked locomotion for performance in rugged environments and a linear actuator for control of the bodys’ relative orientation. A spring-damper is used to mitigate vibrations due to surface conditions that would add noise to the sensors. A nonlinear model for the vehicle is introduced, and linearized. Design considerations of the suspension system are discussed, including the reduction of vibrations and the maximization of contact forces. Finally, the vehicle dynamics are simulated for the linear and nonlinear models, and the effectiveness and computation time of the two are compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.