Abstract

Permanent xylem blockage is a common result of attacks by herbivores and fungi. The mitosporic fungus Phoma tracheiphila (Petri) Kantschaveli et Gikachvili, is the agent of a Citrus tracheomycosis (“malsecco disease”) causing xylem impairment and leading to leaf shedding and plant dieback. In the present study, this pathogen was used for monitoring the effects of increasing levels of stem hydraulic resistance (Rstem) on leaf water status and gas exchange. In this view, measurements are reported of changes in the hydraulic resistance of infected stems (Rstem) of C. aurantium (sour orange) during progressive and irreversible xylem blockage with parallel measurements of leaf water potential and conductance to water vapour. Leaves were highly responsive to increasing Rstem as due to fungal infection, with substantial stomatal closure and drop in water potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.