Abstract

A cost-effective compact instrument for high-stable and sensitive detection of methane (CH4) based on the tunable diode laser absorption spectroscopy technique was experimentally demonstrated. A distributed feedback laser modulated at 1654 nm and two InGaAs photodiodes were deployed in this instrument. The laser was driven by the self-developed temperature and current controller. Spectrum measurements show that the center wavelength of the laser is stable and linearly controlled. Meanwhile, a self-developed digital lock-in amplifier was developed for the extraction of harmonics (1f, 2f) of the gas absorption signal. Experiments of gas detection were carried out to investigate the sensor performance. Firstly, the relation between gas concentration and 1f and 2f harmonics was measured and the relation curve was plotted for calibration. Then, results of accuracy test in different concentrations show that the maximum relative detection error is less than 5.6% in the range 0%–100%. Keeping the other experimental parameters constant, gas samples of 5% concentration was detected during a period of 8 h. The maximum detection error is less than 2.8%, suggesting good detection stability. The sensor can also be applied to field measurement of other gases by adopting lasers at relative wavelength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call