Abstract

We introduce an analogue of Payne’s nodal line conjecture, which asserts that the nodal (zero) set of any eigenfunction associated with the second eigenvalue of the Dirichlet Laplacian on a bounded planar domain should reach the boundary of the domain. The assertion here is that any eigenfunction associated with the first nontrivial eigenvalue of the Neumann Laplacian on a domain $$\Omega $$ with rotational symmetry of order two (i.e. $$x\in \Omega $$ iff $$-x\in \Omega $$ ) “should normally” be rotationally antisymmetric. We give both positive and negative results which highlight the heuristic similarity of this assertion to the nodal line conjecture, while demonstrating that the extra structure of the problem makes it easier to obtain stronger statements: it is true for all simply connected planar domains, while there is a counterexample domain homeomorphic to a disk with two holes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.