Abstract
This article surveys reinforcement learning from the perspective of optimization and control, with a focus on continuous control applications. It reviews the general formulation, terminology, and typical experimental implementations of reinforcement learning as well as competing solution paradigms. In order to compare the relative merits of various techniques, it presents a case study of the linear quadratic regulator (LQR) with unknown dynamics, perhaps the simplest and best-studied problem in optimal control. It also describes how merging techniques from learning theory and control can provide nonasymptotic characterizations of LQR performance and shows that these characterizations tend to match experimental behavior. In turn, when revisiting more complex applications, many of the observed phenomena in LQR persist. In particular, theory and experiment demonstrate the role and importance of models and the cost of generality in reinforcement learning algorithms. The article concludes with a discussion of some of the challenges in designing learning systems that safely and reliably interact with complex and uncertain environments and how tools from reinforcement learning and control might be combined to approach these challenges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual Review of Control, Robotics, and Autonomous Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.