Abstract

This paper presents a new tour-based mode choice model. The model is agent-based: both households and individuals are modelled within an object-oriented, microsimulation framework. The model is household-based in that inter-personal household constraints on vehicle usage are modelled, and the auto passenger mode is modelled as a joint decision between the driver and the passenger(s) to ride-share. Decisions are modelled using a random utility framework. Utility signals are used to communicate preferences among the agents and to make trade-offs among competing demands. Each person is assumed to choose the “best” combination of modes available to execute each tour, subject to auto availability constraints that are determined at the household level. The household’s allocations of resources (i.e., cars to drivers and drivers to ride-sharing passengers) are based on maximizing overall household utility, subject to current household resource levels. The model is activity-based: it is designed for integration within a household-based activity scheduling microsimulator. The model is both chain-based and trip-based. It is trip-based in that the ultimate output of the model is a chosen, feasible travel mode for each trip in the simulation. These trip modes are, however, determined through a chain-based analysis. A key organizing principle in the model is that if a car is to be used on a tour, it must be used for the entire chain, since the car must be returned home at the end of the tour. No such constraint, however, exists with respect to other modes such as walk and transit. The paper presents the full conceptual model and estimation results for an initial empirical prototype. Because of the complex nature of the model decision structure, choice probabilities are simulated from direct generation of random utilities rather than through an analytical probability expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.