Abstract

Touchless user interfaces that are based on gestures typically rely on near-infrared cameras. However, such systems are often hampered by their limited field of view and high-accuracy calibration requirements. Here we report a touchless user interface that is based on a visually transparent near-infrared-sensitive organic photodetector array and can be used on top of a display. Optical transparency is achieved by using a printed copper grid as a bottom transparent conductive electrode and an array of patterned organic photodetector subpixels. Electro-optical modelling is used to optimize the design of the image sensor, leading to a photodetectivity of approximately 1012 Jones at 850 nm and a high visible-light transmittance of 70%. We show that the imager can be used as a penlight-controlled and gesture-controlled touchless user interface when combined with a commercial display.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.