Abstract
Topology optimization is a widely used lightweight design method for structural design of the collaborative robot. In this article, a topology optimization method for the robot lightweight design is proposed based on finite element analysis of the assembly so as to get the minimized weight and to avoid the stress analysis distortion phenomenon that compared the conventional topology optimization method by adding equivalent confining forces at the analyzed part's boundary. For this method, the stress and deformation of the robot's parts are calculated based on the finite element analysis of the assembly model. Then, the structure of the parts is redesigned with the goal of minimized mass and the constraint of maximum displacement of the robot's end by topology optimization. The proposed method has the advantages of a better lightweight effect compared with the conventional one, which is demonstrated by a simple two-linkage robot lightweight design. Finally, the method is applied on a 5 degree of freedom upper-limb exoskeleton robot for lightweight design. Results show that there is a 10.4% reduction of the mass compared with the conventional method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.