Abstract

Fair queueing of rate and delay-sensitive packet flows in a shared-medium, multihop wireless network is challenging due to the unique design issues. These issues include: 1) spatial contention among transmitting flows in a spatial locality, as well as spatial reuse of bandwidth through concurrent flow transmissions in different network locations; 2) conflicts between ensuring fairness and maximizing spatial channel reuse; and 3) the distributed nature of ad hoc fair queueing. In this paper, we propose a new topology-independent fair queueing model for a shared-medium ad hoc network. Our fairness model ensures coordinated fair channel access among spatially contending flows, while seeking to maximize spatial reuse of bandwidth. We describe packetized algorithms that realize the fluid fairness model with analytical performance bounds. We further design a distributed implementation which approximates the ideal centralized algorithm. We present simulations and analysis on the performance of our proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call