Abstract

Even a well-designed system can only control stem cell adhesion, release, and differentiation, while other cell manipulations such as in situ labeling and retention in target tissues, are difficult to achieve in the same system. Herein, native ligand cluster-mimicking islands, composed of topologically engineered ligand, anchoring point AuNP, nuclease mimetics CeIV complexes and magnetic core Fe3 O4 , are designed to facilitate comprehensive cell manipulations in a programmable manner. Three islands with different amounts of AuNPs are constructed, which means tunable interligand spacing within a cluster. These nanostructures are chemically coupled to a substrate using DNA tethers. Under a tissue-penetrative magnetic field, this integrated system promotes stem cell adhesion, proliferation, mechanosensing, differentiation, detachment, in situ effective magnetic labeling and retention both in vitro and in vivo, offering fascinating opportunities for a biomimetic matrix in regenerative medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.