Abstract

The nature of the bonding between lithium atoms, in low-spin and maximum-spin Lin(n=2–6) clusters, was investigated using the topological electron localization function (ELF) approach. The maximum-spin clusters are especially intriguing since their bonding is sustained without having even a single electron pair! Hence this type of bonding had been called “no-pair ferromagnetic-bonding” [Danovich, Wu, Shaik J Am Chem Soc 121:3165 (1999); Glokhovtsev, Schleyer Isr J Chem 33: 455 (1993); de Visser, Danovich, Wu, Shaik J Phys Chem A 106:4961 (2002)]. The following conclusions were reached in the study: (a) In the ground state of Lin, covalent bonding between Li atoms is accounted by the presence of the disynaptic valence basins, which exhibit a significant degree of inter-basin delocalization. (b) Except for the 3Li2 case, the valence basins of all maximum-spin clusters are populated by unpaired electrons. The valence basins are located off Li–Li axis (or Li–Li–Li plane), so that their spatial distribution minimizes the mutual Pauli repulsion and screens the electrostatic repulsion between the Li cores. The inter-basin delocalization is rather high, thereby indicating that the unpaired electrons are virtually delocalized over all the valence basins. (c) The ELF analysis shows that Li atoms in the low-spin clusters are bonded by “two-center two-electron” and “three-center two-electron” bonds. (d) In the maximum-spin species, bonding is sustained by “two-center one-electron” and “three-center one-electron” bonds. The latter picture is complementary to the valence bond picture [Danovich, Wu, Shaik J Am Chem Soc 121 3165 (1999); de Visser, Danovich, Wu, Shaik J Phys Chem A 106: 4961 (2002)], in which the bicentric ferromagnetic-bonding is delocalized over all the short Li–Li contacts, by the mixing of the ionic structures and other nonredundant structures into the repulsive high-spin covalent structure in which all the electrons populate the 2s atomic orbitals, i.e., the 2sa12sb1 2si1 ... 2sn1 configuration. In such a manner bonding can be sustained from “purely ferromagnetic interactions” without electron pairing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call