Abstract

Topological Optics Because most physical systems cannot be totally isolated from their environment, some degree of dissipation or loss is expected. The successful operation of such systems generally relies on mitigating for that loss. Mathematically, such external interactions are described as non-Hermitian. Recent work has shown that controlling the gain and loss in these systems gives rise to a wide variety of exotic phenomena not expected for their isolated Hermitian counterparts. Using a time-dependent photonic lattice in which the topological properties can be controlled, Weidemann et al. show that such a structure can efficiently funnel light to the interface irrespective of the point of incidence on the lattice. Such control of the topological properties could be useful for nanophotonic applications in integrated optical chip platforms. Science , this issue p. [311][1] [1]: /lookup/doi/10.1126/science.aaz8727

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.