Abstract
This paper describes an efficient combinatorial method for simplification of topological features in a 3D scalar function. The Morse-Smale complex, which provides a succinct representation of a function's associated gradient flow field, is used to identify topological features and their significance. The simplification process, guided by the Morse-Smale complex, proceeds by repeatedly applying two atomic operations that each remove a pair of critical points from the complex. Efficient storage of the complex results in execution of these atomic operations at interactive rates. Visualization of the simplified complex shows that the simplification preserves significant topological features while removing small features and noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Visualization and Computer Graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.