Abstract

This article describes a topological approach to generating families of open- and closed-loop walking gaits for underactuated 2-D and 3-D biped walkers subject to configuration inequality constraints, physical holonomic constraints (e.g., closed-loop linkages), and virtual holonomic constraints (user-defined constraints enforced through feedback control). Our method constructs implicitly defined manifolds of feasible periodic gaits within a state-time-control space that parameterizes the biped’s hybrid trajectories. Since equilibrium configurations of the biped often belong to such manifolds, we use equilibria as “templates” from which to grow the gait families. Equilibria are reliable seeds for the construction of gait families, eliminating the need for random, intuited, or bio-inspired initial guesses at feasible trajectories in an optimization framework. We demonstrate the approach on several 2-D and 3-D biped walkers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.