Abstract

A wealth of computational methods has been developed to address problems in systems biology, such as modeling gene expression. However, to objectively evaluate and compare such methods is notoriously difficult. The DREAM (Dialogue on Reverse Engineering Assessments and Methods) project is a community-wide effort to assess the relative strengths and weaknesses of different computational methods for a set of core problems in systems biology. This article presents a top-performing algorithm for one of the challenge problems in the third annual DREAM (DREAM3), namely the gene expression prediction challenge. In this challenge, participants are asked to predict the expression levels of a small set of genes in a yeast deletion strain, given the expression levels of all other genes in the same strain and complete gene expression data for several other yeast strains. I propose a simple -nearest-neighbor (KNN) method to solve this problem. Despite its simplicity, this method works well for this challenge, sharing the “top performer” honor with a much more sophisticated method. I also describe several alternative, simple strategies, including a modified KNN algorithm that further improves the performance of the standard KNN method. The success of these methods suggests that complex methods attempting to integrate multiple data sets do not necessarily lead to better performance than simple yet robust methods. Furthermore, none of these top-performing methods, including the one by a different team, are based on gene regulatory networks, which seems to suggest that accurately modeling gene expression using gene regulatory networks is unfortunately still a difficult task.

Highlights

  • One of the fundamental goals in computational systems biology is to model gene expression levels, and to use such models to predict the behavior of the cell under various external/internal conditions

  • DREAM, which stands for Dialogue on Reverse Engineering Assessments and Methods, is an annual international event aimed at providing an unbiased platform to evaluate the strengths and weaknesses of computational methods in systems biology [8]

  • DREAM organizers provide a set of challenge problems in systems biology, e.g. to reverse-engineer gene regulatory networks or signaling networks, and invite scientists to solve them by computational approaches

Read more

Summary

Introduction

One of the fundamental goals in computational systems biology is to model gene expression levels, and to use such models to predict the behavior of the cell under various external/internal conditions. DREAM, which stands for Dialogue on Reverse Engineering Assessments and Methods, is an annual international event aimed at providing an unbiased platform to evaluate the strengths and weaknesses of computational methods in systems biology [8]. DREAM organizers provide a set of challenge problems in systems biology, e.g. to reverse-engineer gene regulatory networks or signaling networks, and invite scientists to solve them by computational approaches. The true solutions to the problems are held unknown to the participants at the time of prediction, which makes the evaluation relatively objective and unbiased [8,9]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.