Abstract

The extraction of entity relationship triples is very important to build a knowledge graph (KG), meanwhile, various entity relationship extraction algorithms are mostly based on data-driven, especially for the current popular deep learning algorithms. Therefore, obtaining a large number of accurate triples is the key to build a good KG as well as train a good entity relationship extraction algorithm. Because of business requirements, this KG’s application field is determined and the experts’ opinions also must be satisfied. Considering these factors we adopt the top-down method which refers to determining the data schema firstly, then filling the specific data according to the schema. The design of data schema is the top-level design of KG, and determining the data schema according to the characteristics of KG is equivalent to determining the scope of data’s collection and the mode of data’s organization. This method is generally suitable for the construction of domain KG. This article proposes a fast and efficient method to extract the top-down type KG’s triples in social media with the help of structured data in the information box on the right side of the related encyclopedia webpage. At the same time, based on the obtained triples, a data labeling method is proposed to obtain sufficiently high-quality training data, using in various Natural Language Processing (NLP) information extraction algorithms’ training.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.